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Abstract

The p-version least-squares finite element method was used for prediction of solidification from a melt under the influence of an

externally applied magnetic field. The computational results indicate significantly different flow-field patterns and thermal fields in

the melt and the accrued solid in the cases of full gravity, reduced gravity, and an applied uniform magnetic field. � 2002 Published

by Elsevier Science Inc.

1. Introduction

When growing a crystal, such as a semiconductor
crystal, it would be ideal to remove the thermally in-
duced melt convection entirely, thus leading to solidifi-
cation heat transfer by pure conduction. This would be
desirable for two reasons. First, if the velocity within
the melt region is high, it is more likely that small par-
ticles of the crucible wall will be deposited in the crystal
(Garandet and Alboussiere, in press). Such contamina-
tion dramatically reduces the quality of the solid crystal.
Second, for some semiconductors, a dopant is intro-
duced into the melt. It is desirable to achieve a distri-
bution of the dopant in the solid crystal that is as
uniform as possible (Hirtz and Ma, 2000). This is easier
to realize under the conditions of minimized controlled
convection (Hirtz and Ma, 2000).

One way to reduce the convection in the melt region
is to perform the crystal growth in a low gravity envi-
ronment, such as in an Earth-orbiting vehicle. Since
semiconductor melts are highly electrically conducting, a
more practical approach is to use magnetic and electric
fields to suppress the buoyancy induced flows. With
such an electromagnetic device, high quality crystals can
be produced under full gravity.

Magnetic fields can be used to damp the convection
during the directional solidification of electrically con-
ductive melts (Fedoseyev et al., 2001). Computational
methods are needed to enhance our understanding of
the phenomena occurring during the solidification of
semiconductor melts. Effects like the bending of iso-
magnetic lines and the effects of different crucible shapes
on the melt flow are difficult to model analytically and
so they may be studied numerically. In addition, nu-
merical simulation can be used together with optimiza-
tion to determine the distributions of the magnetic field
lines and the shape of the crucible that will minimize the
convective flow throughout the melt.

The equations for laminar steady-state incompress-
ible Newtonian magnetohydrodynamic flows with the
Boussinesq buoyancy approximation (Gray and Gior-
gini, 1976) can be written in the following non-dimen-
sional form (Hughes and Young, 1966; Dulikravich
et al., 1994)

r � V� ¼ 0 ð1Þ

q�V� � rV� � 1

Re
r � l� rV���

þ ðrV�ÞT
��

þrp�

� Ht2

Re
V� 	 B� 	 B� � q�GrkT � ¼ 0 ð2Þ

q�C�
pV

� � rT � � 1

Pe
r � ðk�rT �Þ � Ht2Ec

Re
ðV� 	 B�Þ2 ¼ 0

ð3Þ

r � B� ¼ 0 ð4Þ

r 	 B� � RmV� 	 B� ¼ 0 ð5Þ
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where V� is the fluid velocity, q� is the fluid density, p� is
the hydrodynamic pressure, l� is the temperature de-
pendent coefficient of viscosity, B� is the magnetic flux
density. Only the presence of a steady magnetic field is
considered here so the equations and terms in Maxwell’s
equations relating to the electric field are omitted. The
non-dimensional variables are defined as V� ¼ VU�1

0 ,
B� ¼ BB�1

0 , p� ¼ pq�1
0 U�2

0 , x� ¼ xL�1
0 , y� ¼ yL�1

0 , q� ¼
qq�1

0 , l� ¼ ll�1
0 , C�

p ¼ CpC�1
p0 , and T � ¼ ðT � TcoldÞ=DT0.

The vector k is the unit normal in the y-direction.
The temperature is non-dimensionalized with a tem-
perature difference, DT0, where DT0 ¼ Thot � Tcold. The
non-dimensional numbers are given by

Reynolds number: Re ¼ q0U0L0
l0

Grashof number: Gr ¼ DT0b0g0L0
U 2

0

Peclet number: Pe ¼ L0U0q0Cp0

k0

Hartmann number: Ht ¼ L0B0

ffiffiffiffiffi
r0

l0

r

Magnetic Reynolds number: Rm ¼ g0r0U0L0

Eckert number: Ec ¼ U 2
0

Cp0 DT0

where Cp0 is the specific heat, k0 is the heat conductivity
coefficient, b0 is the volumetric thermal expansion co-
efficient, g0 is the acceleration of gravity, g0 is the
magnetic permeability coefficient, and r0 is the electrical
conductivity of the fluid.

The following dimensionless numbers are useful for
buoyancy driven flows:

Rayleigh number Ra ¼ q2
0Cp0b0g0L

3
0DT0

k0l0

Prandtl number Pr ¼ l0Cp0

k0

If one specifies the values of Ra for a given fluid with
a known value of Pr then the Reynolds number and the
Peclet number are determined by the following (Tang
and Tsang, 1993):

Re ¼
ffiffiffiffiffiffi
Ra
Pr

r
ð6Þ

Pe ¼
ffiffiffiffiffiffiffiffiffiffi
RaPr

p
ð7Þ

This leads to the formula for the reference speed, U0.

U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0g0L0DT0

p
ð8Þ

which then requires that Gr ¼ 1. One avoids explicitly
specifying the reference velocity, U0, by defining the
Reynolds, Peclet, and Grashof numbers in this way.

In this paper, the growth of a silicon crystal under
an applied magnetic field has been simulated with the
p-version of the least-squares finite element method
(LSFEM) (Jiang, 1998; Bochev, 1997) for magnetohy-
drodynamics (MHD) (Dulikravich, 1999; Dennis and
Dulikravich, 2000, 2001). The solidification is modeled
by using temperature dependent properties. The mate-
rial properties for silicon are given in Table 1. Here L is
the latent heat of liquid/solid phase change. The sub-
scripts l and s refer to the liquid and solid properties,
respectively. In the mushy region (where Tl > T > Ts),
the density, specific heat, latent heat, and the viscosity
were taken as linear functions of temperature.

f ¼ T � Ts
Tl � Ts

ð9Þ

q ¼ fql þ ð1� f Þqs ð10Þ

l ¼ fll þ ð1� f Þls ð11Þ

Cp ¼ fCpl þ ð1� f ÞCps ð12Þ
The solid regions are modeled as a melt with a high

viscosity (ls ¼ 103 kgm�1 s�1) (Dulikravich et al., 1994).
Consequently, the computed velocities in the solid re-
gions are not identically zero, but are extremely small
compared to the velocities in the melt. This formulation
allows one code to simultaneously simulate heat transfer
through solid, melt, and mushy regions.

The effect of the latent heat, L, is included by using
an enthalpy method (Morgan et al., 1977). Typically, the
effect of the latent heat can be included in a numerical
simulation by allowing a rapid variation in the heat
capacity in the mushy region. This direct evaluation
leads to satisfactory numerical integrations only if the
curve of the heat capacity against the temperature does
not possess sharp peaks. If the mushy region is com-
pletely contained within a single element, there is a
chance that it may not fall on an integration point and

Table 1

Parameters for MHD silicon crystal growth problem

Density of the melt ql (kgm
�3) 2550.0

Density of the solid qs (kgm
�3) 2330.0

Length of the container Length (m) 0.10

Heat conductivity of the melt kl (Wkg�1 K�1) 64.0

Heat conductivity of the solid ks (Wkg�1 K�1) 22.0

Liquidus temperature Tl (K) 1685.0

Solidus temperature Ts (K) 1681.0

Specific heat of the melt Cpl (J kg
�1 K�1) 1059.0

Specific heat of the solid Cps (J kg
�1 K�1) 1038.0

Viscosity of the melt l (kgm�1 s�1) 0.0007

Electric conductivity r (X�1 m�1) 4:3	 104

Latent heat of phase change L (J kg�1) 1:8	 106

Thermal expansion coefficient b (K�1) 1:4	 10�4
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hence the latent heat will not be accounted for in the
integration process. A better approach is to work with
enthalpy, H, which is a smooth function even in the
phase change zone. The effective heat capacity can be
evaluated without missing the peaks due to the latent
heat. The relation

qCp ¼
dH
dT

ð13Þ

is approximated by

qCp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoH=oxÞ2 þ ðoH=oyÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðoT=oxÞ2 þ ðoT=oyÞ2

q ð14Þ

in an attempt to avoid the possibility of missing the peak
values qCp during the numerical integration procedure.

2. Numerical method

The p-version LSFEM (Jiang and Sonnad, 1994) was
implemented in this work. Details have been published
recently by the authors (Dennis, 2000).

The LSFEM can be formed for the general linear
first-order system of partial differential equations writ-
ten as

½L
u ¼ f ð15Þ
where the first order operator is defined in a two-
dimensional space as

½L
 ¼ ½A1

o

ox
þ ½A2


o

oy
þ ½A3
 ð16Þ

The residual of the system is represented by R.

RðuÞ ¼ ½L
u� f ð17Þ
We now define the following least squares functional

IðuÞ over the domain X

IðuÞ ¼
Z

X
RðuÞT � RðuÞdxdy ð18Þ

The weak statement is then obtained by taking the
variation of I with respect to u and setting the result
equal to zero.

dIðuÞ ¼
Z

X
ð½L
duÞð½L
u� fÞdxdy ¼ 0 ð19Þ

Using equal order shape functions, /i, for all un-
knowns, the vector of unknowns u can be written as

u ¼
Xn

i¼1
/ifu1; u2; u3; . . . ; umg

T
i ð20Þ

where fu1; u2; u3; . . . ; umgi are the nodal values at the ith
node of the finite element. Here, m is the number of
unknowns at each node and n is the number of nodes
per element. Introducing the above approximation for

u into the weak statement leads to a linear system of
algebraic equations

½K
U ¼ F ð21Þ
where ½K
 is the stiffness matrix, U is the vector of un-
knowns, and F is the force vector. It should be noted
that with this formulation ½K
 is always symmetric and
positive definite.

Use of the LSFEM for systems of equations that
contain higher order derivatives is usually difficult due
to the higher continuity restrictions imposed on the
approximation functions. For this reason, it is usually
more convenient to transform the system into an
equivalent first order form before applying the LSFEM.
For the case of MHD, the second order derivatives are
transformed by introducing vorticity, x, and heat flux,
q, as additional unknowns. The final coupled system
after eliminating asterisk symbols becomes

r � V ¼ 0 ð22Þ

qV � rVþ 1

Re
ðlr	 x þ ðrVþ ðrVÞT Þ � rlÞ

þ rp � Ht2

Re
V	 B	 B� qGrkT ¼ 0 ð23Þ

x �r	 V ¼ 0 ð24Þ

qCpV � rT þ 1

Pe
r � q� Ht2Ec

Re
ðv	 BÞ2 ¼ 0 ð25Þ

qþ krT ¼ 0 ð26Þ

r 	 q ¼ 0 ð27Þ

r � B ¼ 0 ð28Þ

r 	 B� RmV	 B ¼ 0 ð29Þ
It should be noted that a curl-free condition on the

heat flux vector field, q, appears in the first-order form.
It was shown by Jiang and Povinelli (Jiang and Povi-
nelli, 1993) that the presence of this condition is required
for achieving optimal convergence rates for the heat flux
vector when Poisson’s equation was solved with the
LSFEM. It was also shown by Jiang and Povinelli (Jiang
and Povinelli, 1993) that the inclusion of the curl-free
condition does not produce an over-determined system
of equations.

We consider a two-dimensional problem only and
write the above system in the general form of a first-
order system (15). Although the LSFEM is perfectly
capable of treating the entire system written in (22)–(29),
it has been found that for low values of Rm it is more
economical to solve the thermal-fluid and magnetic field
equations separately. Here, a general form first-order
system is written for the thermal-fluid system (22)–(24)
and denoted by the superscript fluid. A separate first-
order system is also written in general form for the
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magnetic field equations (25)–(29) and is denoted by the
superscript mag. In addition, the non-linear convective
terms in the fluid flow equations are linearized with
Newton’s method leading to a system suitable for
treatment with the LSFEM described previously. Non-
linear terms due to temperature dependent material
properties are linearized by using the property value
from the previous iteration.

ð30Þ

f fluid ¼

0

q0ðu0 ou0
ox þ v0

ou0
oy Þ

q0ðu0 ov0
ox þ v0

ov0
oy Þ

0

q0Cp0ðu0 oT0
ox þ v0

oT0
oy Þ þ Ht2Ec

Re ðu0By0 � v0Bx0Þ2

0

0

0

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

;

ufluid ¼

u

v

p

x

T

qx
qy

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð31Þ

½Amag
1 
 ¼

"
1 0

0 1

#
; ½Amag

2 
 ¼
"

0 1

�1 0

#
;

½Amag
3 
 ¼ 0 0

Rmv0 �Rmu0

� �
; fmag ¼ 0

0

� �
;

umag ¼ Bx

By

� �
ð32Þ

The solution to the above systems can be found by
solving the linear systems in an iterative manner until
a desired convergence level is achieved. For many engi-
neering problems involving MHD, the value of Rm � 1,
meaning that induced magnetic field is small relative to
the applied magnetic field. Assuming small Rm and
uniform electrical conductivity throughout the melt, the
solution for the magnetic field can be determined that is
independent of the thermal-fluid solution. Here, quan-
tities taken from the previous iteration are designated
with the subscript 0.

The p-version of LSFEM was used to compute all
results reported here. In the p-version LSFEM, a rela-
tively coarse mesh is used. The order of the approxi-
mation function is increased, or enriched, until the
desired level of convergence is obtained. In this case, the
size of the mesh is fixed and the order of the approxi-
mation can be increased uniformly across the mesh.
For problems with smooth solutions, the p-version of
LSFEM converges to the exact solution at an expo-
nential rate as the number of unknowns is increased
by uniform enrichment of the element approximation
functions. The more common h-type LSFEM is based
on low order elements. It converges at a fixed rate as the
number of unknowns is increased by way of uniform
grid refinement.

Most p-type expansions can be categorized as either
nodal or modal expansions. In nodal expansion, the
unknowns become the value of the function at the nodes
of the finite element. In a modal expansion, the un-
knowns are coefficients that may have no obvious
physical meaning as they do in the nodal expansion case.
This makes the imposition of boundary conditions with
a non-linear spatial distribution less direct than in the
nodal expansion case.

The one-dimensional approximation function is given
as

uðxÞ ¼
XPþ1
p

UpðxÞâap ð33Þ

where UpðxÞ are the p-type expansion basis functions
and âap are constant coefficients.

A one-dimensional modal basis can be written in
general form as

UpðxÞ ¼ LpðxÞ; p ¼ 0; . . . ; P ð34Þ
Here the p-type modal basis function is composed of

P þ 1 polynomials, Lp, where each polynomial is of
order p. The modal basis functions of this type are called
hierarchical modal expansions. This term stems from the
observation that an expansion set of order P is con-
tained within the expansion set of order P þ 1. The
higher order expansion sets are built from the lower
order expansion sets. This allows for efficient program-
ming and computation of the approximation functions,
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particularly if adaptive enrichment strategies are used.
Once the p-type expansion is developed in one dimen-
sion, approximation functions for quadrilateral and
hexahedral elements can be constructed easily by using
tensor products of the approximation function in one-
dimensional space.

The p-type finite elements used in this research were
developed using hierarchical basis functions based on
Jacobi polynomials (Karniadakis and Sherwin, 1999).
The Jacobi polynomials are a set of orthogonal poly-
nomials that are a superset of well-known expansions
such as Legendre or Chebyshev polynomials. Use of
Jacobi polynomials results in stiffness matrices that are
relatively sparse and well conditioned compared with
matrices constructed using nodal expansions such as the
popular Lagrange polynomials (Karniadakis and Sher-
win, 1999).

The sparse linear systems were solved by either direct
sparse LU factorization or by iterative methods. Two
iterative methods were implemented in the software; one
based on a Jacobi preconditioned conjugate gradient,
and another based on a multigrid-like technique that
uses the hierarchy of basis functions instead of a hier-
archy of finer grids. The method was implemented in an
object-oriented fashion using the Cþþ programming
language. The software has been tested against analytic
solutions and experimental data for Navier–Stokes
equations and for single-phase laminar incompressible
steady channel flows through transverse electric and
magnetic fields, for shear-driven cavity flows, buoyancy-
driven cavity flows, and flow over a backward-facing
step (Dennis, 2000).

3. Verification of accuracy

The accuracy of the LSFEM for MHD was tested
against known analytic solutions for Poiseuille–Hart-
mann flow. The Poiseuille–Hartmann flow is a one-
dimensional flow of a conducting and viscous fluid
between two stationary plates with a uniform exter-
nal magnetic field applied orthogonal to the plates. An
analytical solution to the equations governing steady
MHD can be found for this case (Hughes and Young,
1966; Cramer and Pai, 1973).

The Hartmann flow problem has been computed
using the p-version LSFEM method for MHD. A mesh
composed of only four quadrilateral elements was used
and is shown in Fig. 3. A uniform p-level of P ¼ 8 was
used for all cases. Fig. 1 shows the change in the u ve-
locity for different values of Hartmann number for both
the analytic solution and the computed solution. Fig. 2
shows the change in the x-component of the magnetic
field for different values of Hartmann number for both
the analytic solution and the computed solution. Larger
values of Hartmann number, Ht, correspond to larger

magnetic field strengths. Excellent agreement is obtained
between the computed and analytic solutions for the
range of Hartmann numbers. The Fig. 4 shows the ac-
curacy of the method versus the number of unknowns.
The h-type method uses parabolic elements and the
mesh is successively refined by uniformly dividing each
element into four smaller elements.

The p-type method uses the initial mesh and succes-
sively increases the p-level for each element. The initial
mesh contained four elements as shown in Fig. 3. The
results clearly show that for the same number of degrees
of freedom (DOF), the p-type elements are much more

Fig. 1. Computed velocity profiles for Hartmann flow for various

values of Ht.

Fig. 2. Computed x-component of flow induced magnetic field for

Hartmann flow for various values of Ht.
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accurate. However, this does not always mean that the
p-type method is more efficient computationally. For the
same numbers of unknowns, the p-type mesh results in a
denser matrix than the corresponding h-type mesh.

4. Numerical results

The solidification of a silicon melt in a square con-
tainer both with and without an applied vertical mag-
netic field was simulated numerically. The container
sides had a length of 0.1 m. The side walls were ther-
mally insulated. A slightly parabolic temperature profile
was applied to the bottom of the container to simulate
non-uniform heating of the melt. The temperature at the

center of the bottom wall was 1688.0 K and the tem-
perature at the bottom corners was set to 1686.0 K.
A uniform temperature of 1676.0 K was applied to the
top wall so that the solidification originates on the top
wall of the container. A no-slip condition for velocity
was enforced on all four walls of the container. A
quadrilateral mesh with 121 elements with a p-level of
P ¼ 6 was used for all cases. The mesh is shown in
Fig. 5. A uniform vertical magnetic field was applied by
assuming magnets on the top and bottom walls while
using a perfect conductor on the side walls.

Three test cases have been simulated numerically. In
all cases gravity acts in the y-direction and is therefore
aligned with the magnetic field. In all the cases the
steady-state solution to the equations governing MHD
with heat transfer is predicted. The relevant non-di-
mensional and dimensional parameters for these test
cases are shown in Table 2.

The first case uses full gravity, g ¼ 9:81 m s�2 with an
applied magnetic field strength of B0 ¼ 0:0 T. Fig. 8
shows the computed streamlines within the melt re-
gion. Two pairs of counter-rotating vortices are present
within the melt region. Fig. 7 shows the computed ve-
locity magnitude within the melt region. The maximum
velocity is 0.00212 m s�1 and occurs at approximately
x ¼ 0:05 m and y ¼ 0:015 m. The computed temperature
distribution is shown in Fig. 6. The motion of the melt
results in a temperature distribution that is quite dif-
ferent from that obtained under pure diffusion.

The second case uses reduced gravity, g ¼ 0:10 m s�2,
with an applied magnetic field strength of B0 ¼ 0:0 T.
Such an environment would exist if the crystal were
grown in a low orbit Earth-orbiting satellite. Fig. 9
shows the computed streamlines within the melt re-
gion. Two pairs of counter-rotating vortices are pre-
sent within the melt region. In this case, the vortices are

Fig. 3. Mesh used for the Hartmann flow test problem.

Fig. 4. Convergence rate for p and h type refinement for Hartmann

flow problem.

Fig. 5. Mesh from crystal growth problem.
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weaker than in the first case. Fig. 11 shows the com-
puted velocity magnitude within the melt region. The
maximum velocity is 0.000172 m s�1 and occurs at ap-
proximately x ¼ 0:05 m and y ¼ 0:015 m. The computed
temperature distribution is shown in Fig. 10. The tem-

perature distribution is very similar to that obtained
under pure diffusion.

The last case uses full gravity, g ¼ 9:81 m s�2 with an
applied magnetic field strength of B0 ¼ 1:0 T. Fig. 12
shows the computed streamlines within the melt region.
Only one pair of counter-rotating vortices is present

Table 2

Relevant dimensional and non-dimensional parameters for the three test cases

Test case g (m s�2) B0 (T) Re Pe Ra Pr Ht

1 9.81 0.0 4269.14 49.4487 211103 0.01158 0.0

2 0.1 0.0 431.029 4.99252 2151.92 0.01158 0.0

3 9.81 1.0 4269.14 49.4487 211103 0.01158 783.764

Fig. 8. Computed streamlines for g ¼ 9:81 m s�2 and B0 ¼ 0:0 T.

Fig. 7. Computed velocity magnitude for g ¼ 9:81 m s�2 and B0 ¼
0:0 T.

Fig. 6. Computed temperature contours for g ¼ 9:81 m s�2 and

B0 ¼ 0:0 T.

Fig. 9. Computed streamlines for g ¼ 0:01 m s�2 and B0 ¼ 0:0 T.
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within the melt region. Thus, the magnetic field has
completely suppressed the secondary vortices that were
present in the cases without the magnetic field. Fig. 14
shows the computed velocity magnitudes within the melt
region. The maximum velocity is only 0.0000434 m s�1

and occurs at approximately x ¼ 0:05 m and y ¼ 0:018
m. This location is slightly higher than in the previous
test cases. In this case the strong vertical magnetic field
acts as a resistance to the horizontal components of the
velocity field due to the Lorentz force. This results in a
suppression of the circulation within the melt region.
The computed temperature distribution is shown in

Fig. 13. The temperature distribution is very similar to
that obtained under pure diffusion. This case demon-
strates that thermal buoyancy-induced flow intensity
can be significantly reduced through the use of applied
magnetic fields, even under full gravity. In the applied
magnetic field case the dominant mode of heat transfer
is conduction whereas in the full gravity case with no
magnetic field the heat transfer is carried out by both
conduction and thermal convection.

It should be noted that in this analysis it is assumed
that the solid and the liquid regions have the same
electrical conductivity. In the real case, the electrical

Fig. 13. Computed temperature contours for g ¼ 9:81 m s�2 and

B0 ¼ 1:0 T.

Fig. 11. Computed velocity magnitude for g ¼ 0:01 m s�2 and B0 ¼
0:0 T.

Fig. 10. Computed temperature contours for g ¼ 0:01 m s�2 and

B0 ¼ 0:0 T.

Fig. 12. Computed streamlines for g ¼ 9:81 m s�2 and B0 ¼ 1:0 T.

276 B.H. Dennis, G.S. Dulikravich / Int. J. Heat and Fluid Flow 23 (2002) 269–277



conductivity may vary significantly between the solid
and liquid phases. This change in conductivity would
result in the bending of the magnetic field lines through
the mushy region (Fedoseyev et al., 2001). The present
LSFEM algorithm would need to be modified to include
a front tracking algorithm in order to accurately ac-
count for this effect. Also, problems with strong thermal
buoyancy are usually three-dimensional flows. There-
fore, more physically meaningful results could be ob-
tained with a fully three-dimensional or axisymmetric
simulation.

5. Conclusions and recommendations

The p-version LSFEM was successfully used for the
prediction of solidification from a melt under an exter-
nally applied uniform magnetic field. The computational
results indicate significantly different flow-field patterns
and thermal fields in the melt and the accrued solid in
the cases of full gravity, reduced gravity, and an applied
uniform magnetic field. Although the magnetic field
significantly reduces the velocity of the flow within the
melt, the crystal may still be slightly contaminated. It
is possible that a uniform magnetic field much stronger
than 1.0 T may be required to completely eliminate the
motion within the melt. Such magnets require super-
conducting ceramics and are costly to maintain. How-
ever, it may be possible to use the current LSFEM based
software for MHD together with numerical optimiza-
tion software to optimize the shape of the container as
well as the distribution of the magnetic field along

the container wall. Such optimized configurations may
locally eliminate motion in the melt while using lower
strength magnets.
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